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Abstract 

Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical set-
tings due to its notable advantages. Despite this, the overall response rates among patients remain modest, along-
side issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint 
blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research 
emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function 
of these key proteins. This review delves into the influence of significant PTMs—ubiquitination, phosphorylation, 
and glycosylation—on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic 
strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies 
in the future.
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Introduction
Tumor microenvironment (TME) refers to the local envi-
ronment in which tumor generation and development 
occur. The TME has complex components, including 

tumor cells, blood vessels, immune cells, fibroblasts, 
various signaling molecules, etc. [1]. These compo-
nents interact to promote tumor growth while increas-
ing tumor heterogeneity, adaptability and metastasis. 
Recognized for its role in tumor progression, current 
research focuses on remodeling the TME to combat can-
cer effectively, particularly through immunotherapeutic 
approaches targeting the microenvironment to restore 
immune cell anti-tumor functions [2].

Tumor immunotherapy is grounded in the principle 
that, under physiological conditions, immune cells pos-
sess the ability to recognize and eliminate tumor cells. 
Nevertheless, tumors and their associated microenviron-
ments generate a substantial quantity of immunosup-
pressive regulatory molecules. These molecules impede 
the functionality of immune cells and thereby facilitate 
the process of tumor immune escape [3]. To counter 
this, reactivating the host’s immune system to recognize 
and eliminate tumor cells is critical. The upregulation of 
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immunosuppressive ligand expression is now believed 
to be one of the primary causes of immunosuppression. 
This class of ligands mediates tumor immune escape by 
binding to receptors on the surface of immune cells and 
impeding immune cell function. For example, numer-
ous studies have shown that tumor cells bind to the PD-1 
receptor on the surface of T cells through high expres-
sion of PD-L1, resulting in suppression of the anti-tumor 
activity of T cells [4]. Such receptors and ligands are 
called "immune checkpoints". A large number of immune 
checkpoints have been identified and studied, such as 
PD-L1, PD-1, PD-L2, LAG-3, CD47, TIM-3, TIGIT, 
B7-H3, CTLA-4, etc. [5] (Fig.  1). Given that immune 
checkpoints are surface—expressed molecules, their 
interactions can be efficiently blocked by the correspond-
ing antibodies. Such a property has paved the way for the 
development of immune checkpoint blockade (ICB) ther-
apies, which have emerged as a crucial therapeutic strat-
egy in the field of cancer immunotherapy. This therapy is 
one of the hottest immunotherapies available and focuses 
on restoring the anti-tumor capacity of immune cells by 
blocking the binding of immunosuppressive receptors 
and ligands. The most effective and typical ICB therapy 
is anti-PD-1/PD-L1 therapy, which has been approved 
by the FDA for the treatment of melanoma, lung can-
cer, liver cancer, gastric cancer, kidney cancer and many 
other tumors.

Despite the widespread use of immune checkpoint 
blockade (ICB) therapy, the effective response rate of 
patients is extremely low, only about 10–30%. In colorec-
tal cancer patients, the response rate is even lower than 
5% [6]. Meanwhile, systemic immunosuppressive block-
ade causes severe side effects to patients, involving vari-
ous organs such as the gastrointestinal tract, skin, and 
liver [7]. In addition, there is still a lack of accurate pre-
dictive biomarkers of immunotherapy efficacy, making it 
impossible to effectively screen the population for immu-
notherapy benefit. In-depth investigation of the regula-
tory mechanisms of immune checkpoints is important 
for finding new biomarkers, developing new combination 
therapy strategies and improving the efficacy of current 
ICB therapy [8, 9].

Post-translational modifications (PTMs) of proteins 
refer to the process of covalent addition of functional 
groups or proteins to proteins, which in turn regulates 
the diversity, stability or localization of protein functions. 
The current mainstream PTMs include phosphorylation, 
ubiquitination, acetylation, glycosylation, SUMOylation, 
palmitoylation etc. [10]. In recent years, numerous stud-
ies have revealed that protein PTMs can affect their pro-
tein synthesis and membrane stability, the ability to bind 
ligands or monoclonal antibodies, as well as the effects 
on downstream signaling activation, ultimately leading 

to tumor immune escape and immune checkpoint inhibi-
tor treatment resistance [11, 12]. For example, it has been 
shown that N-glycosylation of PD-L1 stabilizes PD-L1 
and thus allows it to escape degradation by the proteas-
ome [13, 14]. The PTMs of immune checkpoints are pre-
cisely regulated by multiple signaling pathways including 
the ubiquitination/deubiquitination signaling pathway 
[15], the phosphorylation/dephosphorylation signaling 
pathway, and the glycosylation/deglycosylation signal-
ing pathway, among others. This paper presents a review 
of the known PTMs of major immune checkpoints and 
explores the potential for clinical translation with the aim 
of providing new ideas for anti-tumor immunotherapy.

Major types of protein PTMs
Definition of PTMs
PTM, also known as covalent modification, refers to the 
process of chemical modification of proteins after trans-
lation and plays an important role in almost all cellular 
signaling pathways and networks. In addition to enabling 
human gene coding diversity through specific mRNA 
splicing, PTM of proteins on the side chain or backbone 
promotes increased complexity from the genomic level 
to the proteomic level, which is key to proteomic diver-
sity [16–19]. PTMs can be reversible and dynamic, and 
they have the ability to alter protein function. PTMs 
can alter protein function by proteolytic cleavage, add-
ing various functional groups to amino acids, or altering 
the chemical properties of amino acid residues, thereby 
modulating protein abundance and/or activity and affect-
ing protein interaction and downstream signaling path-
ways. There are hundreds of known ways to covalently 
modify proteins. The most common types of PTMs are 
phosphorylation, acetylation, glycosylation, ubiquitina-
tion, SUMOylation, palmitoylation, etc. [20, 21] (Fig. 2). 
Different PTMs play distinct roles in various biologi-
cal processes. For example, reversible phosphorylation 
underlies many signal transduction pathways, glycosyla-
tion regulates the stability and structure of many mem-
branes and secretory proteins, and ubiquitination targets 
proteins for degradation. These processes are performed 
and fine-tuned by thousands of enzymes, and when these 
enzymes become dysregulated, they can lead to pathol-
ogy. In particular, in cancer cells, almost all major drivers 
from oncogenes and tumor suppressors to transcription 
factors and signaling molecules are associated with PTM 
dysregulation [22–24].

Phosphorylation
Protein phosphorylation is one of the most widespread 
and important PTMs, which has been well-studied over 
the past few decades. Protein phosphorylation is revers-
ible during signal transduction. Approximately 40% to 
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60% of the protein is temporarily phosphorylated. And 
thousands of different phosphorylation sites have been 
identified [25]. The balance between activation and inac-
tivation of many key signaling molecules are delicately 

maintained by phosphorylation, and dysregulation of 
these processes can lead to disruptions in signal trans-
duction and metabolism [26]. Phosphorylation is the 
process of transferring the phosphate group of ATP to 

Fig. 1 Checkpoints and their ligands: Diverse ligand-receptor interactions, including immune checkpoints and their associated ligands. PD-1 
Programmed Cell Death protein 1, PD-L1 Programmed Death Ligand 1, PD-L2 Programmed Death Ligand 2, LAG-3 Lymphocyte Activation 
Gene 3, CD28 Cluster of Differentiation 28, CD47 Cluster of Differentiation 47, CD80 Cluster of Differentiation 80, CD86 Cluster of Differentiation 
86, CD112 (Nectin-3) Cluster of Differentiation 112, CD113 (PVRL2) Cluster of Differentiation 113, CD155 (PVR) Cluster of Differentiation 155, LAG3 
Lymphocyte-activation gene 3, LSECtin Liver sinusoidal endothelial cell lectin, FGL1 fibrinogen-like protein 1, MHC Major histocompatibility 
complex, TCR  T cell receptor, B7-H3 (CD276) immunoregulatory protein B7-homologue 3, TIM-3 (HAVCR2) T cell immunoglobulin and mucin 
domain-containing molecule 3, TIGIT T cell immunoreceptor with Ig and ITIM domains, CTLA-4 cytotoxic T-lymphocyte-associated protein 4, Ps 
Phosphatidylserine, HMGB 1 High mobility group box 1 protein
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the amino acid residues of the substrate protein (serine, 
threonine, tyrosine), catalyzed by protein kinase [27]. The 
reverse process, on the other hand, involves the removal 
of the corresponding phosphate group by protein phos-
phatases. It is the opposite action of these two enzymes 
and the energy expenditure and generation involved in 
them that make phosphorylation the preferred mode of 
regulation of many physiological activities in the body 
(Fig. 2). Complex enzyme phosphorylation networks play 
a key role in cellular cascade reactions. Phosphorylation-
regulated cell signaling affects almost all aspects of cellu-
lar processes, from growth, differentiation and apoptosis, 
etc. [28].

Ubiquitination
Ubiquitination is the covalent linkage of ubiquitin (a 
highly conserved primary sequence linked to the lysine 
of the substrate protein by an isopeptide bond). Cova-
lent modification of substrates through a three-step 
enzymatic cascade reaction: Ubiquitin is activated by 
ubiquitin-activating enzyme (E1) through the use of ATP. 
The activated ubiquitin is then transferred to ubiquitin-
conjugating enzyme (E2) and recruited by E3 ligase, 
which binds the substrate protein to ubiquitin mole-
cules and ultimately targets the substrate protein to the 
proteasome for endogenous degradation- the system 
is known as the ubiquitin–proteasome system (UPS) 

Fig. 2 PTMs and their common types, including phosphorylation, glycosylation, ubiquitination, SUMOylation, palmitoylation and ISGylation: 
After DNA is transcribed into RNA, it is then translated into proteins and then PTM occurs. Currently, the main PTMs include phosphorylation 
modification, glycosylation modification, ubiquitination modification, SUMOylation, ISGylation and palmitoylation. Glycosylation (G, yellow 
hexagons), phosphorylation (P, orange circles), ubiquitination (Ub, red circles), SUMOylation (S, light blue circles), palmitoylation (palmitoyl, dark 
blue pentagon), ISGylation (ISG15, blue oval). ATP Adenosine TriPhosphate, ADP Adenosine DiPhosphate
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(Fig.  2). Its precise regulation ensures the removal of 
unwanted, damaged, misfolded and potentially harmful 
proteins [29, 30]. Depending on the number of ubiqui-
tin units attached, proteins can be monoubiquitinated 
(addition of a single ubiquitin molecule) or polyubiq-
uitinated (sequential addition of more ubiquitin mol-
ecules to the previous one). Usually, ubiquitination can 
degrade substrates through the K48-linked chain, while 
the K63-linked chain is mainly involved in non-proteas-
ome degradation functions. In contrast, the assembly of 
ubiquitin on the substrate can be reversed by the action 
of Deubiquitinases (DUBs), which dissociate ubiquitin 
from the ubiquitinated target proteins. The process of 
deubiquitination is very precise and well-ordered and is 
essential for maintaining physiological ubiquitin homeo-
stasis. It is involved in a variety of important life activities 
including cell cycle regulation, DNA repair, gene tran-
scription, protein degradation and kinase activation.

Glycosylation
Glycosylation, a highly diverse PTM, plays a crucial role 
in enhancing protein diversity. This process, involving 
hundreds of enzymes and a vast array of glycans, sig-
nificantly increases protein structural complexity and is 
essential in various biological processes [31–34]. Glyco-
sylation typically occurs in membrane and secreted pro-
teins, with N-linked (addition of glycans to asparagine 
residues in the ER) and O-linked glycosylation (attach-
ment of glycans to serine/threonine residues in the 
Golgi apparatus) being the most common forms. Degly-
cosylation, the removal of saccharides from glycopro-
teins, can reverse this process (Fig. 2). Both glycosylation 
and deglycosylation are vital for proper protein folding, 
localization, stabilization, and function, thereby regulat-
ing recognition, adhesion and cell killing functions of 
immune cells [31–33, 35–42].

SUMOylation
SUMOylation is the process of adding SUMO to pro-
teins. SUMOylation is also a reversible post-transla-
tional modification that can be reversed by specific 
proteases called SUMO-specific proteases (SENP), 
such as SENP1、SENP2、SENP 3. Currently, four 
SUMO isoforms have been identified, namely SUMO1, 
SUMO2/3, and SUMO4. The SUMO catalytic cycle 
comprises maturation, activation, conjugation, ligation, 
and de-modification. The dysregulation of the SUMO 
system is associated with various diseases, particularly 
cancer. SUMOylation is widely involved in carcinogen-
esis, DNA damage responses, cancer cell proliferation, 
metastasis, and apoptosis. Therefore, SUMO can serve 
as a potential therapeutic target for cancer. Some stud-
ies have found that IR + ATRi can activate the classical 

cGAS-STING-pTBK1/pIRF3 axis by increasing the level 
of cytoplasmic double-stranded DNA and activate non-
classical STING signaling by attenuating the SHP1-medi-
ated inhibition of the TRAF6-STING-p65 axis, and by 
promoting the SUMOylation of SHP1 at lysine 127 [43].

Palmitoylation
Protein palmitoylation is a lipid modification that is usu-
ally catalyzed by members of the zinc finger aspartate-
histidine-histidine-cysteine (ZDHHC) motif-containing 
palmitoyltransferase family. The main form is the S-pal-
mitoylation modification, which involves the covalent 
addition of a 16-carbon fatty acid, palmitic acid to the 
thiol group of cysteine residues [44]. The attachment of 
the hydrophobic lipid group influences the membrane 
anchoring of the target protein and regulates its activity, 
interaction, trafficking, localization, and stability [44].

ISGylation
ISGylation is a newly discovered ubiquitin-like post-
translational modification mediated by the ISG15 protein 
encoded by interferon-stimulated genes (ISGs) and its 
specific enzyme system (E1-activating enzyme UBE1L, 
E2-binding enzyme UBCH8, E3-ligating enzyme HERC5, 
TRIM25 or ARIH1, etc.). ISGylation can inhibit protein 
degradation by competitively binding to the ubiquitina-
tion site [45]. ISGs encode all ISG15 conjugating and 
deconjugating enzymes. Their expression is regulated by 
interferons [46]. This regulatory mechanism by interfer-
ons endows ISGylation with an important function in 
tumor immunity.

PTMs increase the complexity from the genome to the 
proteome, either synergistically or exclusively modifying 
proteins. These modifications alter a protein’s physico-
chemical properties, spatial conformation, stability, and 
function, thus regulating its biological activity. As key 
regulators in tumor immune escape, PTMs of immune 
checkpoints play a significant role in their maturation, 
degradation, and translocation. This summary highlights 
key PTMs and mechanisms involved in the regulation of 
classical immune checkpoints.

Modifications of immune checkpoints 
and the underlying mechanisms
PD‑1/PD‑L1, PD‑L2
PD-1, an apoptosis-related gene discovered by T. Honjo 
and colleagues at Kyoto University in 1992 [47], is primar-
ily expressed on immune cells as a co-inhibitory recep-
tor. PD-1 plays a pivotal role in suppressing the immune 
response [48–50]. PD1, together with its ligands—PD-L1 
(CD274, B7-H1) and PD-L2 (CD273, B7-DC), belongs to 
the B7-CD28 family. They are all type I transmembrane 
glycoproteins with immunoglobulin-like extracellular 
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domains (Fig. 3). These molecules are involved in main-
taining peripheral tolerance but can also hinder anti-
tumor immunity [50–53]. By binding to PD-L1 and 
PD-L2, PD-1 inhibits T lymphocyte function, thereby 
suppressing autoimmune responses.

PD‑1
As one of the most important immune checkpoints, 
PD-1 is a transmembrane protein expressed on activated 
T cells and its major ligands are PD-L1 and PD-L2 [54]. 
The binding of PD-1 to PD-L1 or PD-L2 inhibits T-cell 
activation, with PD-L2 having a 2–sixfold higher affin-
ity for PD-1 than PD-L1, though PD-L1 is more broadly 
expressed [55]. Antibody therapies targeting PD-1 and 
its ligands are the most widely used immunotherapies 
in clinic today. Structurally, PD-1 comprises three main 
regions: the extracellular immunoglobulin variable (IgV) 
region, a hydrophobic transmembrane region, and an 
intracellular region that includes the immunoreceptor 

tyrosine-based inhibitory motif (ITIM) and the immuno-
receptor tyrosine-based switch motif (ITSM) (Fig. 3) [56].

PD-1 contains two key tyrosine phosphorylation sites 
within the ITIM (Y223) and ITSM (Y248) regions. Upon 
ligand binding, these sites are phosphorylated by Src 
family kinases like Lck [57]. Phosphorylated PD-1 then 
recruits the phosphatase SHP2, which dephosphoryl-
ates critical molecules such as ZAP-70, CD3ζ, and PKCθ, 
leading to inhibition of TCR signaling and reduced T cell 
activation, thereby diminishing T cell anti-tumor activ-
ity [58, 59]. Recent research shows that in bone marrow 
cells, PD-1 can be induced by GM-CSF to phosphorylate, 
subsequently recruiting SHP2 to inhibit differentiation, 
activation, and anti-cancer functions [60]. In addition, 
PD-1 phosphorylation also regulates T cell function 
through PTEN-PI3K-AKT and RAS-MEK-ERK signal-
ing [61, 62]. Building on this, Fernandes et al. developed a 
bispecific diabody (RIPR-PD-1) that induces the cis-link-
age of PD-1 and CD45, reducing PD-1 phosphorylation, 

Fig. 3 PTMs of PD-1: PD-L1 and PD-L2 are ligands of PD-1. PD-1 inhibits CD28 signaling by recruiting the protein tyrosine phosphatases SHP2/
SHP1 through phosphorylated ITSM/ITIM. SAP suppressed PD-1 signaling by inhibiting the activity of SHP2. E3 ubiquitin ligases, such as FBXO38, 
KLHL22, c-Cbl and FBW7, promote the ubiquitination and degradation of PD-1 by interacting with it. 5-FU can block the ubiquitination process 
of PD-1. Camrelizumab and STM418 are antibodies that can target the N58 glycosylation site of PD-1. PD-1 Programmed Cell Death protein 1, PD-L1 
Programmed Death Ligand 1, PD-L2 Programmed Death Ligand 2, CD28 Cluster of Differentiation 28, CD80 Cluster of Differentiation 80, CD86 Cluster 
of Differentiation 86, SHP1 Src homology region 2 (SH-2) domain-containing phosphatase 1, SHP2 Src homology region 2 (SH-2) domain-containing 
phosphatase 2, STAT3 Signal Transducer and Activator of Transcription 3, 5-FU 5-Fluorouracil, FBXO38 F-box protein 38, KLHL22 Kelch Like Family 
Member 22, c -Cbl Casitas B-lineage Lymphoma, FBW7 F-box and WD repeat domain-containing 7
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and showing greater effectiveness in tumor treatment 
than conventional anti-PD-1 therapies [63].

PD-1 is also a highly glycosylated protein, with four 
potential N-glycosylation sites identified on the extracel-
lular IgV domain of human PD-1: N49, N58, N74, and 
N116. Mutating these sites to Glutamine (Q) significantly 
reduces the molecular weight of PD-1 [64]. The glyco-
sylation level of PD-1 increases during T-cell activation 
[65], likely due to elevated expression of glycosyltrans-
ferase B3GNT2 and FUT8. Using CRISPR-Cas9 in T 
cells, Okada et al. found that core fucosylation modifica-
tions impact PD-1 surface expression, with all four glyco-
sylation sites involved. Functional analysis indicates that 
glycosylation at N49 and N74 is essential for PD-1 sur-
face expression and proper function. Mechanistic stud-
ies reveal that the core fucosyltransferase Fut8 drives this 
modification, and inhibiting Fut8 reduces PD-1 surface 
levels, thereby restoring T cell function [64]. In immu-
notherapy design targeting PD-1 glycosylation, Shi et al. 
developed a CAR-T with an N74 mutation, significantly 
enhancing CAR-T’s anti-tumor activity by reducing PD-1 
surface levels [66]. Additionally, the deletion of core fuco-
sylation has been shown to promote ubiquitin-mediated 
degradation of PD-1, effectively eliminating T-cell sup-
pressor signaling [37].

Glycosylation modifications also influence PD-1’s abil-
ity to bind to ligands and specific monoclonal antibodies 
(mAbs). Studies have shown that the binding affinity of 
the FDA-approved PD-1-specific mAb Camrelizumab 
to PD-1 is affected by glycosylation, with strong binding 
observed to glycosylated PD-1. However, this binding is 
significantly reduced when the N58A mutation occurs 
[67, 68]. Additionally, mutations at glycosylation sites 
within the PD-1 IgV domain, particularly at N58, result 
in the loss of PD-1’s ability to bind to PD-L1, making 
N58 a critical site for regulating their affinity. Building 
on these findings, researchers developed an antibody tar-
geting the PD-1 N58 glycosylation site, named STM418, 
which demonstrated significantly higher affinity for PD-1 
than the existing mAb nivolumab [65].

FBXO38 is the first identified PD-1-specific E3 ubiq-
uitin ligase, shown to mediate polyubiquitination at the 
PD-1 K233 site, leading to its proteasomal degradation. 
However, chronic TCR signaling within the TME down-
regulates FBXO38 expression, facilitating rapid tumor 
growth. IL-2 can restore FBXO38 levels, which subse-
quently reduces PD-1 expression and inhibits tumor 
growth [69]. Further studies have identified other E3 
ligases KLHL22, c-Cbl, and FBW7 that promote PD-1 
ubiquitination and degradation by interacting with 
PD-1 [70–72]. Mice deficient in c-Cbl exhibit increased 
PD-1 expression, leading to a more rapid growth of 
the tumor. Similarly, high FBW7 expression favors the 

development of "hot tumors". Conversely, 5-fluoroura-
cil (5-FU) treatment inhibits KLHL22-mediated down-
regulation of PD-1, suggesting that combining 5-FU 
with PD-1 mAbs could be an effective therapeutic strat-
egy. A deeper understanding of PD-1 ubiquitination 
could open new avenues for tumor treatment.

PD‑L1 phosphorylation Phosphorylation is pivotal 
in regulating PD-L1. Glycogen synthase kinase 3 beta 
(GSK3β) phosphorylates PD-L1 at threonine 180 (T180) 
and serine 184 (S184), leading to its degradation via the 
26S proteasome. This process is influenced by factors 
such as epidermal growth factor (EGF), tyrosine kinase 
inhibitors (TKIs), MET and olaparib, which modulate 
GSK3β activity [14, 73–75]. Similarly, glycogen syn-
thase kinase 3 alpha (GSK3α) facilitates PD-L1 degra-
dation by phosphorylating serine 279 (S279) and serine 
283 (S283), promoting its interaction with E3 ubiquitin 
ligase ARIH1 [76, 77].

Metformin and D-mannose enhance PD-L1 phospho-
rylation at serine 195 (S195) through AMP-activated 
protein kinase (AMPK) activation, causing abnormal 
glycosylation, endoplasmic reticulum (ER) retention, 
and degradation [78]. Under energy deprivation, AMPK-
induced phosphorylation at S283 disrupts PD-L1’s inter-
action with CKLF-like MARVEL transmembrane domain 
containing 4 (CMTM4), leading to PD-L1 degradation 
[79]. NIMA-related kinase 2 (NEK2) stabilizes PD-L1 by 
phosphorylating threonine 194 (T194) and threonine 210 
(T210), especially in pancreatic cancer, preventing degra-
dation by the UPS [80, 81].

Additionally, tyrosine phosphorylation at tyrosine 
112 (Y112), driven by Janus kinase 1 (JAK1) following 
interleukin-6 (IL-6) stimulation, recruits the N-glycosyl-
transferase STT3A to catalyze PD-L1 glycosylation and 
maintain PD-L1 stability [82]. Inhibitors of the IL-6/JAK1 
pathway, such as ruxolitinib, can downregulate PD-L1 to 
improve T-cell-mediated tumor killing and immunother-
apy efficacy [82].

PD‑L1 ubiquitination Over the past decade, substantial 
evidence has demonstrated that PD-1 and PD-L1 pro-
tein expression is primarily regulated through ubiquitin-
mediated proteasomal degradation, an ATP-dependent 
and highly selective pathway known as the UPS [83–87]. 
The UPS operates as a dynamic, bidirectional system, 
where ubiquitin molecules are conjugated to substrate 
proteins via the ubiquitin ligase cascade (E1-E2-E3), lead-
ing to ubiquitination. Once a polyubiquitin chain forms 
on a target protein, it is recognized and degraded by the 
26S proteasome. Conversely, DUBs counteract this pro-
cess by cleaving Ub molecules from substrates, thereby 
preventing their degradation.
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Multiple E3 ubiquitin ligases, including β-TrCP [14], 
SPOP [88], TRIM21 [89], STUB1 [90], TNFAIP3 [91], 
HRD1 [92], ARIH1 [76], NEDD4 [93, 94], RNF125 [95], 
and MARCH8 [96], have been identified as key pro-
moters of PD-L1 degradation through ubiquitination. 
DUBs, categorized into six families based on structural 
and functional characteristics—Ubiquitin Carboxyl-
Terminal Hydrolases (UCHs), ovarian tumor proteases 
(OTUs), ubiquitin-specific proteases (USPs), the Jose-
phin domain family (MJD), the JAB1/MPN/Mov34 
protease family (JAMM), and the recently discovered 
single-cell chemoattractant protein-inducible family—
play a crucial role in PD-L1 regulation [97]. Notably, 
DUBs such as CSN5[86], OTUB1 [98, 99], USP5 [100], 
USP7 [101, 102], USP8 [103], USP9X [104, 105], USP21 
[106], USP22 [107] can enhance PD-L1 expression by 
removing ubiquitin chains, thereby stabilizing the pro-
tein on the cell surface.

The phosphorylation regulation dependent on GSK3β 
is crucial for the recognition of E3 ubiquitin ligases. 
Non-glycosylated PD-L1 forms a complex with GSK3β 
and β-TrCP, promoting PD-L1 to be phosphorylated at 
the T180/S184 sites, which in turn triggers subsequent 
ubiquitination degradation. Stabilization of PD-L1 by 
inactivation of GSK3β or inhibiting β-TrCP enhances 
tumor-immunosuppressive function and gives an advan-
tage for tumor cell survival in an in  vivo mouse model 
[14, 108].

Cullin-RING E3 ubiquitin ligases (CRLs), the largest 
family of E3 ligases in eukaryotes, regulate various cel-
lular processes, including PD-L1 ubiquitination. SPOP, a 
CRL3 adapter protein, forms a complex with Cullin 3 to 
modulate PD-L1 levels [88, 109–111]. TRIM21 and SPOP 
both can destabilize PD-L1 through ubiquitination that 
dependent on cyclin—dependent kinases. Specifically, 
CDK4 can strengthen the ubiquitination of PD-L1 medi-
ated by SPOP, whereas CDK5 can suppress the ubiquit-
ination of PD-L1 induced by TRIM21 [112].

STUB1 (CHIP), a co-chaperone of Hsp90/Hsc70, 
facilitates K48-linked polyubiquitination of PD-L1 [90, 
113], but its potential collaboration with HIP1R remains 
unclear. Genome-wide CRISPR-Cas9 screens have iden-
tified regulators like CMTM6, which prolongs PD-L1’s 
half-life by inhibiting STUB1-mediated ubiquitination 
[84, 87]. Caspase 8 induces PD-L1 ubiquitination degra-
dation by upregulating A20 (TNFAIP3) expression [91], 
and 5,7,4’-trimethoxyflavone can stabilize HRD1 to also 
induce PD-L1’s ubiquitination and promote its degrada-
tion [114].

Ubiquitin ligases RNF125 and NEDD4 also catalyze 
PD-L1 degradation [87, 93–95]. MARCH8, a newly 
identified E3 ligase, is implicated in PD-L1 degradation, 
though its mechanism remains unknown [96].

Mithramycin A (MIT) may increase PD-L1 expression 
by inhibiting its ubiquitination, although the exact mech-
anism is unclear [115]. PD-L1 also undergoes monoubiq-
uitination, leading to lysosomal degradation, distinct 
from its polyubiquitination-driven proteasomal degra-
dation [73, 116, 117]. Palmitoylation by DHHC3 inhibits 
monoubiquitination and prevents PD-L1 degradation via 
the ESCRT pathway, but the specific protease regulating 
this process is still unidentified.

CSN5, a COP9 signalosome subunit induced by nuclear 
factor κB p65, is critical for PD-L1 stabilization in cancer 
cells, aiding immune evasion. CSN5 not only negatively 
regulates CRLs, but also acts as a DUB, directly deubiq-
uitinating PD-L1 [86, 118, 119]. Natural inhibitors like 
curcumin and berberine destabilize PD-L1 by inhibiting 
CSN5 activities, thereby reducing immunosuppression 
[86, 120].

USP22 regulates PD-L1 through two mechanisms 
[107]. It binds to PD-L1 and directly deubiquitinates it, 
thereby promoting its stability [107, 121]. Addition-
ally, USP22 influences PD-L1 expression via the USP22-
CSN5-PD-L1 axis by removing ubiquitin chains from 
CSN5, stabilizing CSN5, and subsequently regulating 
PD-L1 levels [107].

USP8 has been found to be able to impede PD-L1 deg-
radation via the ubiquitin–proteasome pathway [103, 
122]. However, another study shows that USP8 inhibi-
tors antagonize K48-linked ubiquitination, enhancing 
TRAF6-mediated K63-linked ubiquitination, thereby 
increasing PD-L1 abundance [123].

TMUB1 stabilizes PD-L1 by direct binding and com-
petes with the E3 ligase HUWE1 to interact with PD-L1, 
inhibiting its polyubiquitination at K281 in the ER [124]. 
OTUB1 deubiquitinates K48-linked chains on PD-L1, 
stabilizing its protein levels. Depletion of OTUB1 
reduces PD-L1, decreases PD-1 binding on tumor cells, 
and heightens tumor cell susceptibility to PBMC-medi-
ated cytotoxicity [98, 99].

In addition to the aforementioned enzymes, several 
newly identified DUBs, including USP5 [100], USP7 
[101, 102], USP9X [104, 105], and USP21 [106] have 
been shown to stabilize PD-L1 expression through deu-
biquitination. While these DUBs play a role in maintain-
ing PD-L1 levels, their specific mechanisms of action 
require further investigation. It is also essential to explore 
which DUBs are more physiologically relevant in regulat-
ing PD-L1 ubiquitination and whether this regulation is 
dependent on the cellular or tissue environment, varying 
across different cancer types.

PD‑L1 N‑glycosylation N-linked glycosylation, the 
attachment of oligosaccharides to specific asparagine 
(N) residues in proteins, plays a crucial role in PD-L1 
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stability and its interaction with the PD-1 recep-
tor. PD-L1 is glycosylated at four key residues (N192, 
N200, and N219), which helps maintain its stability by 
inhibiting GSK3β-β-TRCP-mediated polyubiquitina-
tion, thereby promoting immune evasion by inhibiting 
the function of T-cells [13, 14, 125, 126]. Studies have 
shown that inhibiting N-glycosylation, such as through 
the use of 2-deoxyglucose (2DG) or a combination of 
metformin and 2DG, can reduce PD-L1 expression on 
the surface of breast cancer cells. This inhibition of gly-
cosylation leads to the deglycosylation of PD-L1, coun-
teracting low glucose concentration-induced PD-L1 
upregulation [127]. The N-glycosyltransferase STT3 
promotes PD-L1 N-glycosylation, which is essential 
for PD-L1 upregulation during epithelial-mesenchymal 
transition (EMT), contributing to cancer cell immune 
evasion in preclinical models [128]. Additionally, β-1,3-
N-acetylglucosaminyl transferase 3 (B3GNT3) cata-
lyzes the poly-N-acetyllactosamine repeats on PD-L1, 
which are critical for PD-1 binding, particularly at resi-
dues N192 and N200 [13].The splice variant of FKBP5 
(FKBP51s) promotes PD-L1 glycosylation and stability, 
although the precise mechanisms remain unclear [129]. 
Inhibiting FKBP51s with the selective inhibitor SAFit 
reduces PD-L1 levels [130]. The EGF signaling pathway 
has also been implicated in promoting PD-L1 glycosyla-
tion [14]. Furthermore, antibodies targeting PD-L1 gly-
cosylation, such as gPD-L1, can block the PD-1/PD-L1 
interaction, enhance PD-L1 internalization and degra-
dation, and exhibit potent antitumor activity in triple-
negative breast cancer models when used in antibody–
drug conjugates (ADCs) [13, 65].

Metformin activates AMP-activated AMPK and phos-
phorylates the S195 site of PD-L1, resulting in abnor-
mal N-linked glycosylation of PD-L1, causing it to be 
retained in the ER, followed by ER-associated degrada-
tion (ERAD), which reduces the stability and membrane 
localization of PD-L1 [78]. In a breast tumor model, it 
was found that metformin combined with anti-CTLA4 
treatment leads to significant improvements in tumor 
burden, survival rate, and CTL activity [78]. Similar to 
metformin, it was also found in the 4T1 breast tumor 
model that the combination therapy of D-mannose 
and anti-PD-1 can significantly inhibit tumor growth 
and prolong the lifespan of tumor-bearing mice [131]. 
Another study found that resveratrol has dual effects on 
the PD-1/PD-L1 pathway. On the one hand, it can inhibit 
N-glycosylation of PD-L1, leading to the accumulation of 
abnormal N-linked glycosylated forms of PD-L1 in the 
ER. On the other hand, resveratrol predicted to bind to 
the intracellular domain of PD-L1 and induce its dimeri-
zation, thereby interfering with the PD-L1/PD-1 interac-
tion [132].

GLT1D1, an enzyme that transfers glycans to pro-
teins, can stabilize PD-L1 through N-linked glycosyla-
tion, thereby promoting immunosuppression and tumor 
growth. Studies have shown that GLT1D1 may be a novel 
therapeutic target for treating B-NHL [133].

Interestingly, a recent study indicates that O-linked 
N-acetylglucosamine (O-GlcNAcylation) can promote 
tumor immune evasion by inhibiting the lysosomal 
degradation of PD-L1 [134]. Additionally, a previously 
undescribed site undergoing O-linked glycosylation was 
also found in the stalk region of the PD-1 protein [135]. 
Therefore, further research on the O-linked glycosylation 
of PD-L1/PD-1 may become a new direction for clinical 
diagnosis and treatment.

PD‑L1 palmitoylation Palmitoylation inhibits PD-L1 
ubiquitination, thereby blocking its transport to the mul-
tivesicular body (MVB) via the ESCRT pathway, result-
ing in decreased lysosomal degradation and increased 
cell surface expression of PD-L1 and thus inhibiting the 
cytotoxicity of T cells. Existing studies have shown that 
the Cys272 site has been verified as a critical palmitoyla-
tion site of PD-L1, which contributes to the stability of 
PD-L1 and blocks the immune surveillance of T cells [44, 
117, 136]. Studies indicate that ZDHHC3 and ZDHHC9 
induce the palmitoylation of PD-L1 and stabilize its pro-
tein activity, thereby promoting tumor growth [117, 137]. 
Canceling palmitoylation by knocking out ZDHHC3/9 
or introducing the C272A mutation in PD-L1 can reduce 
the expression and cell surface distribution of PD-L1 
and make cancer cells sensitive to T cell-mediated kill-
ing in  vitro [117, 138]. Additionally, researchers have 
also observed PD-L1 palmitoylation in cisplatin-resistant 
bladder cancer cells [136]. Inhibiting fatty acid synthase 
(FASN) can inhibit PD-L1 palmitoylation and its expres-
sion [136]. Therefore, targeting PD-L1 palmitoylation 
provides a new research direction for tumor therapy. 
Previous studies have demonstrated that targeting PD-L1 
palmitoylation can increase the sensitivity of tumor cells 
to T cell killing and delay tumor growth [138, 139].

PD‑L1 ISGylation In LUAD, Qu et al. found that ISG15 
expression positively correlated with lymphocyte infiltra-
tion, including CD3 + , CD4 + T cells, but not with CD8 + T 
cells. Mechanistic studies revealed that K-48-modified 
ISGylation was formed between ISG15 and PD-L1, thus 
increasing ubiquitination and protein degradation of 
PD-L1, activating anti-tumor immune function and sensi-
tizing ICB efficacy [140].

Association of PD‑L1 PTMs PD-L1 activity is regulated 
by both glycosylation and ubiquitination, which are cru-
cial for its stability and interaction with the PD-1 recep-
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tor. N-glycosylation at specific asparagine residues (N192, 
N200, and N219) is essential for maintaining PD-L1 sta-
bility and its interaction with PD-1 by inhibiting serine/
threonine phosphorylation of PD-L1 by GSK3β, thereby 
preventing its degradation. This glycosylation does not 
affect PD-L1 acetylation or nuclear translocation. EGF-
induced ubiquitination leads to increased mono- and pol-
yubiquitination of glycosylated PD-L1. In addition, EGF 
stimulated upregulated PD-L1 phosphorylation, acetyla-
tion, but does not affect its SUMOylation in A431 cells. 
Palmitoylation of PD-L1 further enhances its stability 
by preventing ubiquitination and subsequent lysosomal 
degradation, highlighting the complex post-translational 
regulation of PD-L1 that balances its degradation and sta-
bility to control immune evasion mechanisms in cancer 
cells [13, 14, 73, 86, 117, 128].

Phosphorylation also plays a pivotal role in regulat-
ing PD-L1 stability. IL-6-activated JAK1 phosphorylates 
PD-L1 at Y112, which recruits the ER-associated N-gly-
cosyltransferase STT3A, catalyzing PD-L1 glycosylation 
and preserving its stability [82]. In the absence of glyco-
sylation, PD-L1 is phosphorylated at the T180 and S184 
sites, leading to β-TrCP-mediated ubiquitination and 
degradation [141]. What’s more, AMPK phosphorylates 
PD-L1 at S195,which triggers abnormal glycosylation, 
resulting in PD-L1’s degradation and increasing the anti-
tumor activity of CTL [78]. Furthermore, kinases such as 
NEK2 and GSK3β have opposing effects on PD-L1 sta-
bility. NEK2 phosphorylates PD-L1 at T194 and T210, 
preventing its degradation mediated by ubiquitination 
modification, thereby upregulating PD-L1 expression 
[80]. The interplay between these kinases and their com-
peting roles in regulating PD-L1 underscores the com-
plexity of its PTMs, necessitating further research to fully 
understand how these processes are coordinated and 

whether additional kinases may also contribute to PD-
L1’s regulation (Fig. 4).

PD‑L2
PD-L2, a crucial member of the B7 family, plays an 
important role in immune evasion by contributing to T 
cell dysfunction and helping cancer cells escape immune 
surveillance. As a ligand for PD-1, the biological sig-
nificance of PD-L2 and the relationship between PD-L2 
and its target molecules remain unclear, unlike PD-L1, 
which has been extensively studied and widely used, but 
PD-L2 has been shown to have overlapping functions 
with PD-L1 [55]. Glycosylation at specific sites, such as 
N157, N163, and N189, significantly enhances PD-L2’s 
stability by preventing ubiquitin-mediated degradation 
[142]. Inhibition of N-linked glycosylation in colorectal 
cancer cells has been shown to markedly reduce PD-L2 
protein levels, emphasizing the importance of glycosyla-
tion in maintaining PD-L2’s stability [143]. Additionally, 
glycosylation prevents ubiquitin-dependent lysosomal 
degradation, thereby facilitating PD-L2’s binding to PD-1, 
which promotes immune evasion. Recent studies have 
shown that EGF/STAT3 signaling drives PD-L2 gly-
cosylation through the upregulation of the N-glyco-
syltransferase FUT8, a crucial enzyme in this process. 
This glycosylation mechanism is essential for enhancing 
tumor immune suppression and influencing the response 
to anti-EGFR therapies [144]. Inhibiting STAT3 with 
Stattic, a specific inhibitor, reduces PD-L2 glycosyla-
tion, promotes its degradation, and decreases its sur-
face expression, leading to a lower affinity for PD-1 and 
the reactivation of T cell-mediated immune responses. 
Moreover, glycosylation at specific sites such as N64, 
located in the C-D loop region of PD-L2, has been shown 
to enhance the dynamic properties of this region, thereby 

Fig. 4 Structure and PTMs of PD-L1 (phosphorylation, glycosylation and ubiquitination): Presented here is a schematic diagram that 
illustrates the functional domains of PD-L1 as well as its diverse PTMs. PD-L1 is composed of two extracellular immunoglobulin-like domains, 
a transmembrane (TM) region, and an intracellular domain (ICD), and is regulated by multiple PTMs, including N-glycosylation (G, yellow hexagons), 
phosphorylation (P, orange circles), and ubiquitination (Ub, red circles). The corresponding modified amino acid residues, upstream regulators, 
and the outcomes of each post-translational modification are indicated in the figure. PD-L1 can be phosphorylated by GSK3α, GSK3β, NEK2, AMPK, 
and JAK1. STT3, B3GNT3, GLT1D1, EGF and FKBP51s can promote the glycosylation of PD-L1. PD-L1 can be polyubiquitinated by E3 ubiquitin ligases 
β-TRCP, SPOP, TRIM21, STUB1, TNFAIP3, HRD1, ARIH1, NEDD4, RNF125, and MARCH8. PD-L1 can be deubiquitinated by deubiquitinating enzymes 
CSN5, OTUB1, USP5, USP7, USP8, USP9X, USP21, and USP22. GSK3β, CDK4, Caspase8, Trimethoxyflavone, and GSK3α, as the corresponding upstream 
pathways, can promote the ubiquitination of PD-L1 mediated by the corresponding E3 ubiquitin ligases, while CDK5 and CMTM 6 respectively 
inhibit the ubiquitination of PD-L1 mediated by TRIM21 and STUB1. GSK3 Glycogen synthase kinase 3, STAT3 Signal Transducer and Activator 
of Transcription 3, JAK1 Janus kinase 1, AMPK AMP-activated protein kinase, IL-6 Interleukin-6, B3GNT3 β-1,3-N-acetylglucosaminyltransferase 3, 
EMT Epithelial—Mesenchymal Transition, β-TRCP β-transducin repeat-containing protein, SPOP Speckle-type POZ protein, TRIM21 Tripartite Motif 
Containing 21, STUB1 STIP1 homology and U-Box containing protein 1, TNFAIP3 Tumor necrosis factor-α-induced protein 3, HRD1 HMG-CoA 
reductase degradation 1, ARIH1 Ariadne RBR E3 ubiquitin protein ligase 1, NEDD4 Neural precursor cell expressed, developmentally down-regulated 
4, RNF125 Ring Finger Protein 125, MARCH8 Membrane-Associated Ring Finger (C3HC4) 8, CSN5 COP9 signalosome subunit 5, OTUB1 Ovarian tumor 
domain-containing ubiquitin aldehyde-binding protein 1, USP Ubiquitin Specific Protease, CDK Cyclin Dependent Kinase, Caspase Cysteine-aspartic 
acid proteas

(See figure on next page.)
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affecting PD-1/PD-L2 dissociation. Inhibition of glyco-
sylation at the N64 site increases PD-L2 binding affinity 
for PD-1, indicating potential therapeutic implications 

for cancer immunotherapy [145]. Although glycosyla-
tion sites at N10 and N43 have also been identified, their 
functional significance remains unclear [146].

Fig. 4 (See legend on previous page.)
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Overall, these findings underscore the importance of 
glycosylation in regulating PD-L2’s stability and function, 
offering new avenues for therapeutic interventions aimed 
at modulating PD-L2’s interactions with PD-1 to improve 
cancer immunotherapy outcomes.

CD47
CD47, also known as Integrin-associated protein (IAP), 
is the first identified phagocytosis checkpoint and is 
structurally characterized as a transmembrane glyco-
protein with glycosylation [147, 148]. The primary ligand 
for CD47 is SIRPα (also known as BIT, SHPS-1, and 
CD172a), which, upon binding to CD47, recruits and 
activates intracellular SHP1 and SHP2 proteins. This 
interaction initiates a series of downstream cascades 
that lead to the dephosphorylation of Myosin IIA, inhibit 
cytoskeletal rearrangement, and ultimately emit a "Don’t 
eat me" signal, thereby preventing macrophage-mediated 
phagocytosis and facilitating immune evasion [149–151]. 
In addition to SIRPα, other ligands such as thrombos-
pondin-1 (TSP-1), integrin α2β1, and αvβ3 have also 
been identified as CD47 binding partners [152–157]. 
Through interactions with these ligands, CD47 regu-
lates various cellular functions by activating downstream 

phosphorylation signaling pathways (Fig.  5). However, 
further studies are needed to explore these pathways and 
their potential as targets for antitumor therapy. Although 
CD47 has been established as a key regulator of intracel-
lular phosphorylation signaling [158–160], the specific 
mechanisms by which CD47 itself may undergo phos-
phorylation modifications remain to be elucidated.

Six potential N-glycosylation sites have been identified 
on CD47 [157]; however, it remains uncertain whether 
glycosylation affects CD47’s ligand-binding properties 
and its subsequent signaling pathways. A study by Ran-
ganath et  al. (2006) demonstrated that glycosylation is 
essential for anchoring CD47 to the cell membrane in 
a yeast model [161], implying that glycosylation might 
influence CD47’s ligand-binding capacity. Contrarily, 
Winston and Shyamsundar et al. reported that although 
both CD47 and SIRPα undergo post-translational glyco-
sylation, glycosylation is not required for their interaction 
[162, 163]. Further supporting this, recombinant mono-
meric CD47 and SIRPα expressed in E. coli were shown 
to disrupt the CD47-SIRPα interaction in  vitro, despite 
lacking glycosylation, indicating that glycosylation is not 
necessary for this interaction [164]. Although the pre-
cise role of CD47 glycosylation remains unclear, different 

Fig. 5 PTMs of CD47: When CD47 on the surface of tumor cells interacts with SIRPα on macrophages, it causes the intracellular portion 
of SIRPα to be phosphorylated. Then, SHP-1 and SHP2 are activated, which subsequently inhibits myosin IIA and prevents the phagocytosis 
of macrophages. There are six potential N-glycosylation sites on CD47, but whether glycosylation affects the binding of CD47 to its ligands, 
as well as the ligand-binding characteristics of CD47 and subsequent signal transduction, remains highly uncertain. CD47 can be ubiquitinated 
by the E3 TRIM21 ligase and then transported to the proteasome for degradation, thereby blocking the CD47/SIRPα signaling pathway 
and enhancing anti-tumor immunity. SIRPα Signal Regulatory Protein Alpha, CD47 Cluster of Differentiation 47, SHP1 Src homology region 2 (SH-2) 
domain-containing phosphatase 1, SHP2 Src homology region 2 (SH-2) domain-containing phosphatase 2, TRIM21 tripartite -motif protein 21
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glycosylation patterns of CD47 in malignant versus nor-
mal cells have been observed. This differential glycosyla-
tion has led to the development of a bispecific antibody, 
TJC4, which selectively binds to tumor cells without 
cross-reacting with CD47 on erythrocytes. This suggests 
that targeting glycosylation modifications may provide a 
promising strategy for the development of CD47-related 
biotherapeutic drugs [165–167].

Current research on CD47 ubiquitination is limited, 
though some studies suggest a potential role for ubiqui-
tin-associated protein PLIC-1 in interacting with CD47, 
possibly contributing to the integration of adhesion and 
signaling components involved in cell migration [168, 
169]. Another recent study [89] demonstrated that in 
the post-translational regulation of CD47, ubiquitina-
tion mediated by the E3 ligases TRIM21, facilitates CD47 
degradation. Additionally, bioinformatics analysis using 
the UbiBrowser platform (http:// ubibr owser. ncpsb. org/) 
identified five E3 ligases predicted to target CD47 with 
moderate confidence. These findings suggest the poten-
tial for developing small molecule inhibitors based on 
PROTAC (proteolysis-targeting chimera) technology. 
Zhang et al. engineered checkpoint nano-proteolysis tar-
geting chimeras (nano-PROTACs) that induce targeted 

degradation of SHP2 via the UPS. This strategy blocks 
checkpoint signaling pathways, including CD47/SIRPα 
and PD-1/PD-L1, thereby activating cancer photoim-
munotherapy and reinvigorating antitumor macrophages 
and T cells [170].

CTLA‑4
Cytotoxic T lymphocyte-associated protein 4 (CTLA-4/
CD152), a type of transmembrane protein that generates 
T cell inhibitory signals by binding to ligands [171]. It is 
predominantly expressed by T cells, particularly regula-
tory T cells (Tregs). CTLA-4 shares significant homology 
with the T cell co-stimulatory molecule CD28 [172], and 
both CTLA-4 and CD28 interact with CD80 (B7-1) and 
CD86 (B7-2, B70) on antigen-presenting cells (APCs) to 
initiate co-stimulatory or co-inhibitory signaling path-
ways (Fig.  6) [173, 174]. Although CTLA-4 is primarily 
localized intracellularly, it translocated to the cell surface 
upon T cell activation, where it exerts its inhibitory func-
tion [175]. Notably, even at low surface expression levels, 
CTLA-4 can still mediate inhibitory signaling, leading to 
the hypothesis that intracellular CTLA-4 also plays a cru-
cial role in T cell inactivation [176].

Fig. 6 PTMs of CTLA-4: CTLA-4 binding to CD80/86 affects T cell function. Phosphorylation of CTLA-4 YVKM motifs recruits SHP2. The clathrin 
adaptor complex AP-1 binds to CTLA4, contributing its entry into the lysosome for degradation. In addition, CTLA-4 binds to the AP-2, 
and consequently undergoes AP-2-mediated internalization. Fyn, Lyn, Lck, JAK2 can promote CTLA4 phosphorylation. Mgat1 and Mgat5 promotes 
the surface retention of CTLA-4 through the regulation of glycosylation. CTLA-4 Cytotoxic T-lymphocyte–associated antigen 4, SHP2 Src homology 
region 2 (SH-2) domain-containing phosphatase 2, CD80 Cluster of Differentiation 80, CD86 Cluster of Differentiation 86, Fyn FYN Proto-Oncogene, 
Lyn LYN Proto-Oncogene, Lck LCK Proto-Oncogene, JAK2 Janus Kinase 2, Mgat1 Alpha-1,3-Mannosyl-Glycoprotein 2-Beta-N-Acetylglucosaminyltrans
ferase, Mgat5 Alpha-Mannoside Beta-1,6-N-Acetylglucosaminyltransferase V

http://ubibrowser.ncpsb.org/
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Phosphorylation plays a crucial role in determining 
the localization and signaling of CTLA-4. Tyrosine resi-
dues Y165, Y182, Y201, and Y218 have been identified 
as phosphorylation sites on CTLA-4. The YVKM motif 
(Y165) was the first confirmed site, and early studies 
revealed that the phosphorylation status of this motif 
influences the trafficking, internalization, and function 
of CTLA-4 [177, 178]. In the absence of Y165 phospho-
rylation, CTLA-4 binds to the clathrin adaptor complex 
AP-2, leading to internalization mediated by AP-2 [178, 
179]. Conversely, phosphorylation of Y165 stabilizes 
CTLA-4 at the cell surface, facilitating CD80/86 bind-
ing and initiating inhibitory signaling [180]. More recent 
studies have confirmed that the YVKM motif is critical 
for regulating CTLA-4 internalization [181].

However, Nakaseko et  al. demonstrated that the inhi-
bition of T-cell activation by CTLA-4 was independ-
ent of the YVKM motif and that its inhibitory function 
did not require tyrosine phosphorylation. This suggests 
that CTLA-4 operates on two distinct regulatory levels: 
a phosphotyrosine-dependent mechanism for surface 
retention and a phosphotyrosine-independent interac-
tion with signaling molecules [176, 182]. As research has 
progressed, this contradiction persisted, with Schneider 
et  al. reporting that the presence of the YVKM motif 
helps block TCRζ signaling, or combined TCRζ/CD28 
signaling. Schneider’s study attributed the discrepancy 
to differences in antibody presentation—soluble ver-
sus immobilized—indicating that soluble antibodies are 
more dependent on the YVKM motif than immobilized 
ones [183, 184]. Additionally, Schneider et  al. identi-
fied another clathrin adaptor complex, AP-1, which also 
binds to the GVYVKM motif but shuttles CTLA-4 from 
the trans-Golgi network (TGN) to the lysosome for deg-
radation [185].

In characterizing the kinases responsible for CTLA-4 
tyrosine phosphorylation, researchers have identified 
members of the Src family—Fyn, Lyn, and Lck—as key 
players that bind to CTLA-4 and phosphorylation at 
the Y165 and Y182 sites. This phosphorylation induces 
CTLA-4 to recruit the tyrosine phosphatase SHP2 in a 
Fyn-dependent manner [186]. Conversely, Chuang et al. 
demonstrated that Fyn and Lck also phosphorylate the 
Y201 and Y218 sites of CTLA-4, and they found that 
phosphorylation at Y201 facilitates CTLA-4 recruitment 
of SHP2. Their findings also indicated that Y201 phos-
phorylation is correlated with CTLA-4 accumulation on 
the cell surface [187]. In contrast to Y201, Baroja et  al. 
showed that ZAP-70 promotes the cell surface retention 
of CTLA-4 by inducing phosphorylation at the Y165 and 
Y182 sites [176]. Further investigations by Hu et al. found 
that the transfection of Fyn or Lck can enhance the phos-
phorylation of intracellular of CTLA-4 and facilitate the 

recruitment of PI3K [188]. In addition to Fyn, Lyn, and 
Lck, studies discovered that the tyrosine kinase JAK2 
phosphorylates Y165 in HUT78 T cell lines [189]. It was 
also observed that depletion of PAG enhances Src kinase 
activity and proximal T cell receptor signaling, causing 
T-cell unresponsiveness; this is achieved by Fyn-depend-
ent hyperphosphorylation of CTLA-4, which in turn 
leads to the recruitment of SHP-1 into lipid rafts [190]. 
Despite the extensive literature on CTLA-4 phosphoryla-
tion, the conclusions remain inconsistent and sometimes 
contradictory. Thus, further precise studies are necessary 
to clarify the role and implications of these phosphoryla-
tion modifications.

The internalization and surface retention of CTLA-4 
are regulated not only by tyrosine phosphorylation but 
also by N-glycosylation [191], with N-acetylaminoglu-
cosyltransferase I (Mgat1) playing a critical role in this 
process. Treatment with Vitamin D3 has been shown to 
enhance Mgat1 expression and increase N-glycan chain 
branching, which results in reduced internalization and 
elevated surface levels of CTLA-4 in T cells [192]. Fur-
thermore, TCR signaling promotes the N-glycosylation of 
CTLA-4 by enhancing glucose uptake and upregulating 
Mgat5, thereby maintaining CTLA-4 on the cell surface 
[193]. Additionally, the common CTLA-4 polymorphism 
T17A is correlated with changes in CTLA-4 glycosylation 
levels. Aberrant glycosylation of the CTLA-4Ala17 vari-
ant has been linked to inhibited CTLA-4 surface expres-
sion [194].

N-glycosylation is also essential for CTLA-4 signaling. 
Structural analyses have suggested that N-glycosylation 
may indirectly mediate the interaction between CTLA-4 
and its ligands, CD80/CD86 [195], by maintaining the 
proper orientation or spatial organization of CTLA-4 
[196, 197]. Two N-linked glycosylation sites, N78 and 
N110, have been identified as critical for CTLA-4 to 
form dimers [198]. Metzler et al. demonstrated that the 
N78 glycosylation site is crucial for ligand binding, as the 
N78D mutation led to significant aggregation and loss of 
CD80/CD86 binding, whereas the mutation of N110 had 
no such effect [196]. Moreover, Dong et al. (2020) used a 
humanized CTLA-4 antibody, mAb146, to show that the 
conserved N110 glycosylation site plays a role in cross-
species binding and the functional of the antibody [199]. 
In addition to N-glycosylation, advancements in high-
resolution mass spectrometry have revealed unexpected 
O-linked glycosylation in CTLA-4 Fc-fusion proteins. 
This O-linked glycosylation deficiency likely reduces 
protein aggregation, possibly by limiting the presence 
of junctional O-glycans that impede interchain disulfide 
bond reformation [200].

The ubiquitination of CTLA-4 remains largely unex-
plored, with both the specific E3 ligase responsible for 
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CTLA-4 ubiquitination and the ubiquitination site on 
CTLA-4 yet to be identified. Although direct ubiqui-
tination modifications of CTLA-4 have not been fully 
characterized, studies on CTLA-4-deficient T cells have 
shown a significant reduction in overall ubiquitination 
levels, suggesting the crucial role of ubiquitination in the 
CTLA-4 pathway [201].

B7‑H3
B7-H3 (CD276), a member of the B7 immunoglobulin 
superfamily, is a type I transmembrane protein that is 
notably overexpressed in various solid tumors, includ-
ing bladder cancer, prostate cancer, and melanoma, while 
exhibiting limited expression in normal tissues. B7-H3 
primarily functions as an immunoinhibitory molecule, 
facilitating immune evasion by tumor cells. Beyond its 
immune checkpoint role, B7-H3 is implicated in promot-
ing tumor cell migration, proliferation, invasion, angio-
genesis, and drug resistance [202].

B7-H3 is a highly glycosylated protein, with cur-
rent studies identifying eight glycosylation sites: N91, 
N104, N189, N215, N309, N322, N407, and N433 [203]. 
In triple-negative breast cancer (TNBC), where PD-1/
PD-L1 immunotherapy often proves ineffective, recent 
research has uncovered a novel mechanism by which 
core fucosylation of B7-H3 at its N-glycans facilitates 
immune escape. Targeted intervention aimed at inhibit-
ing B7-H3 core fucosylation enhances TNBC cell sensi-
tivity to PD-L1 mAb therapy. Mechanistic studies reveal 
that this core fucosylation is mediated by FUT8, which 
stabilizes B7-H3 and maintains its presence on the cell 
membrane. Knockdown of FUT8, which inhibits glyco-
sylation, reduces B7-H3-mediated immunosuppressive 
functions [203]. Additionally, research on Ca9-22 oral 
cancer cells demonstrated that B7-H3 glycan contains 
terminal α-galactose and exhibits higher fucosylation and 
enhanced interactions with immune cells compared to 
B7-H3 from normal SG cells. This abnormal glycosyla-
tion profile of B7-H3 presents potential diagnostic and 
therapeutic opportunities for oral cancer [204]. Further-
more, in esophageal squamous cell carcinoma (ESCC), 
investigators found that B7-H3 glycosylation, particularly 
fucosylation, is significantly upregulated, promoting the 
development and progression of ESCC and suggesting 
that B7-H3 fucosylation may serve as a potential bio-
marker for this cancer [205].

In addition to glycosylation, B7-H3 has been identified 
to undergo phosphorylation and ubiquitination modifica-
tions at specific sites—S513 and T551 for phosphoryla-
tion, and K521 and K526 for ubiquitination. However, the 
functional roles of these PTMs in the regulation of B7-H3 
have not yet been thoroughly investigated.

TIM‑3
TIM-3 (HAVCR2) is a one of the key immune check-
points, initially identified on the surface of Th1 cells, 
where it functions as an activation-induced suppressor 
molecule. It plays a key role in mediating immune toler-
ance, particularly in the context of chronic viral infec-
tions and cancer [206]. TIM-3 has four known ligands: 
the galectin-9, carcinoembryonic antigen-related cell 
adhesion molecule 1 (Ceacam1), high mobility group 
box-1 protein (HMGB1), and the non-protein ligand 
PS [207]. Studies indicate that TIM-3 is a marker of T 
cell exhaustion, and therapeutic targeting of TIM-3 has 
shown promise in rejuvenating T cells, enabling them to 
persist in combating pathogens or tumor cells (Fig. 7).

TIM-3 contains five conserved tyrosine residues in its 
cytoplasmic region, among which Y265 and Y272 play 
an extremely crucial role in regulating T-cell signaling 
and can be phosphorylated by kinases such as ITK or Src 
family kinase [208–210]. In the absence of phosphoryla-
tion, the protein BAT3 binds to TIM-3, inhibiting TIM-
3-induced T cell exhaustion and death. Phosphorylation 
of Y265 and Y272, however, causes BAT3 dissociation, 
reversing its inhibitory effects [211]. Galectin-9 has been 
reported to promote phosphorylation of the Y265 site 
[209, 212], indicated that the tyrosine residue is impor-
tant for regulating T-cell fate. Additionally, Leishmania 
donovani recruits and activates the non-receptor tyrosine 
kinase Btk by promoting TIM-3 phosphorylation in den-
dritic cells (DCs). This activation of Btk, in turn, inhib-
its DC activation/maturation by suppressing the NF-κB 
pathway in a manner that depends on IL-10 [213]. Ear-
lier structural studies revealed that phosphatidylserine 
binds to TIM-3 to promote salt bridge formation and the 
release of tyrosine-containing chain [214]. More recent 
research has shown that PS can also promote TIM-3 
phosphorylation, which competes with PI3K p110 for 
binding to P85, resulting in the inhibition of downstream 
Akt/mTORC1 signaling and dysfunction in two natural 
killer (NK) cell subpopulations [215]. Building on this, 
researchers developed a phosphatidylserine photoswitch 
element (phoPS) that modulates TIM-3 phosphorylation 
and NK cell function in a light-dependent manner [216].

Glycosylation may be crucial for TIM-3, as the binding 
activity of galectin-9 to TIM-3-Ig fusion protein is influ-
enced by N-glycosylation [217]. Additionally, iso- and 
heterotypic interactions between TIM-3 and other TIM 
family proteins are also dependent on glycosylation mod-
ifications [218]. Computational modeling has suggested 
that glycosylation at the N78 site may affect the binding 
of TIM-3 to small molecule ligands, providing a poten-
tial avenue for designing small molecule drugs target-
ing TIM-3 [219]. The NetOGlyc 4.0 algorithm predicts 
that TIM-3 has eight O-glycosylation sites; however, the 
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functions of these glycosylation sites remain unexplored 
[220]. Moreover, studies have indicated that N-glyco-
sylation site mutants, such as N53Q and N100Q, do not 
impair TIM-3 binding to ligands on CD4( +) CD25( +) T 
cells [217].

TIGIT
The T cell immunoreceptor with Ig and ITIM domains 
(TIGIT), also known as VSIG9, VSTM3, and WUCAM, 
is a member of the CD28 family that consists of an extra-
cellular immunoglobulin variable domain, a type I trans-
membrane domain, and an intracellular domain [221]. It 
is expressed on T cells and NK cells, with its expression 
being upregulated upon cell activation. Functioning as 
a co-inhibitory receptor, TIGIT binds to several ligands 
including CD155 (poliovirus receptor, PVR), CD112 
(PVRL2, nectin-2), and CD113 (nectin-3). This binding 
inhibits the cytotoxic activities of T cells and NK cells, 

positioning TIGIT as a novel immune checkpoint follow-
ing the PD-1/PD-L1 pathway (Fig. 8) [222, 223].

Current research on TIGIT signaling has primar-
ily focused on NK cells, highlighting the significance of 
phosphorylation modifications in the ITIM and the ITT-
like motif within the cytoplasmic domain of TIGIT. In 
murine models, phosphorylation of ITIM at Y233 and the 
ITT-like motif at Y227 has been shown to trigger inhibi-
tory signaling [224]. In human NK cells, binding of TIGIT 
to its ligand, poliovirus receptor (PVR), induces phos-
phorylation at the Y225 site within the ITT-like motif. 
This phosphorylation event facilitates the recruitment of 
GRB2 and β-arrestin 2, which, through the involvement 
of SHIP-1, inhibit PI3K and MAPK signaling pathways 
as well as TRAF6-mediated NF-κB activation, ultimately 
leading to functional inhibition of NK cells [225, 226]. 
The Y231 site within the ITIM of human TIGIT also 
undergoes phosphorylation, although its role remains 
contentious. Noa et  al. suggest that phosphorylation at 

Fig. 7 PTMs of TIM3: TIM3 has four known ligands: HMBG1, Ceacam1, PS, and Galectin9. Bat3 binds to the unphosphorylated Y256/263 sites 
of TIM3’s cytoplasmic domain to send stimulatory signals in T cells. Interaction with Galectin9/Ceacam1 phosphorylates TIM3’s Y265 (Y256 
in mouse) and Y272 (Y263 in mouse) sites, preventing Bat3 binding and turning TIM3 from stimulatory to inhibitory. PS binds to TIM3 and promotes 
its phosphorylation, thereby inhibiting AKT/mTOR signaling. TIM3 can also be glycosylated, and its mechanism and function are unknown. mTORC 
Mammalian target of rapamycin complex, Bat3 HLA-B Associated Transcript 3, TIM-3 (HAVCR2) T cell immunoglobulin and mucin domain-containing 
molecule 3, Ps Phosphatidylserine, HMGB1 High mobility group box 1 protein, Ceacam1 CEA Cell Adhesion Molecule 1
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Y231 mediates inhibitory signaling, while Liu et al. report 
that mutations in Y231 result in only minor effects on NK 
cell function [223, 226]. In addition to phosphorylation, 
recent studies have drawn attention to the glycosylation 
of TIGIT. Specifically, N-glycosylation at the N32 and 
N101 sites has been identified as crucial for modulat-
ing TIGIT’s binding affinity to PVR, making these sites 
potential targets for future immunotherapeutic strategies 
[227].

LAG‑3
Lymphocyte activation gene-3 (LAG-3, CD223) is an 
activation-induced cell surface molecule that belongs to 
the immunoglobulin superfamily (IgSF) [228]. LAG-3 has 
been found to be expressed on a variety of immune cells, 
including T cells, NK cells, plasmacytoid dendritic cells 
(pDCs), and B cells [229, 230]. Structurally, LAG-3 shares 
similarities with CD4, as both proteins contain four con-
served extracellular immunoglobulin-like domains. Nota-
bly, LAG-3 binds to MHC class II molecules with higher 
affinity than CD4 [231]. Beyond MHC-II, LAG-3 also 
interacts with other ligands such as galectin-3, LSECtin, 

and fibrinogen-like protein 1 (FGL1) (Fig.  9) [232–234]. 
Although LAG-3 has been shown to negatively regulate 
T cell activation and proliferation, the precise signaling 
mechanisms involved remain unclear.

LAG-3 is a glycoprotein with four potential N-linked 
glycosylation sites within its extracellular domain. Stud-
ies showed that the binding of MHC class II and FGL1 
to LAG-3 is dependent on glycosylation [233–235]. How-
ever, beyond this, the impact of glycosylation on LAG-3 
function remains largely unexplored. Regarding phos-
phorylation, human LAG-3 possesses only two serine 
residues, S484 and S497, and lacks threonine and tyros-
ine residues. Studies indicate that single or double muta-
tions inactivating these serine phosphorylation sites do 
not affect the protein kinase C (PKC) signaling-mediated 
translocation of LAG-3 to the cell membrane [236]. In the 
context of ubiquitination, LAG-3 has been identified as a 
substrate for the linear ubiquitin chain assembly complex 
(LUBAC) and the DUB OTULIN. Exogenous ubiquitina-
tion assays have demonstrated that the HOIP compo-
nent, along with HOIL-1L, mediates the ubiquitination of 
LAG-3, whereas OTULIN facilitates its deubiquitination. 

Fig. 8 PTMs of TIGIT: TIGIT binds to CD112, CD113, and CD155. TIGIT inhibits the PI3K, MAPK, and NF—κB signaling pathways by recruiting 
SHIP1. TIGIT T cell immunoreceptor with Ig and ITIM domains, Grb2 Growth factor receptor-bound protein 2, β-arrestin 2 Beta-arrestin 2, SHIP 
Src homology 2 domain-containing inositol 5-phosphatase, TRAF6 Tumor necrosis factor receptor-associated factor 6, NF-kB Nuclear factor 
kappa-light-chain-enhancer of activated B cells, MAPK Mitogen-activated protein kinase, PI3K Phosphoinositide 3-kinase



Page 18 of 28Hu et al. Experimental Hematology & Oncology           (2025) 14:37 

Further analysis revealed that mutations such as K498R, 
3KR (K356R/K366R/K498R), and LAG-3-K0 have mini-
mal impact on LAG-3’s overall ubiquitination levels. 
However, when combined with serine mutations (LAG-
3-K0-S484A or LAG-3-K0-S497A), a significant reduc-
tion in LAG-3 ubiquitination was observed [237].

Clinical applications of combined ICI therapies 
with PTMs targeted therapy
The current status and dilemmas of immune checkpoint 
therapy
ICB therapy has emerged as a more effective and dura-
ble treatment option for patients with advanced cancers 
compared to conventional therapies, resulting in favora-
ble therapeutic outcomes. Since the FDA approval of 
the CTLA-4 antibody ipilimumab in 2011 for the treat-
ment of advanced melanoma, several antibodies target-
ing CTLA-4, PD-1, and PD-L1 have been approved for 
various cancers. These include the CTLA-4 inhibitor 
ipilimumab, and PD-1/PD-L1 inhibitors such as pem-
brolizumab, nivolumab, atezolizumab, durvalumab, 
and avelumab. The indications for these therapies have 
expanded from melanoma and NSCLC to gastric can-
cer, hepatocellular carcinoma, head and neck can-
cer, renal cell carcinoma (RCC), bladder cancer, anal 
cancer, colorectal cancer, TNBC, and Hodgkin’s lym-
phoma, among others [238–245]. Recent advancements 

in cancer immunotherapy have ushered in the era of 
immune checkpoint blockade, with newer targets such as 
CD47, LAG-3, TIM-3, TIGIT, and B7-H3 being explored 
in preclinical and clinical trials as potential therapeu-
tic agents (Table  1). A search of ClinicalTrials.gov and 
the NCI Drug Dictionary reveals numerous ICIs under-
going clinical evaluation, many of which have demon-
strated promising outcomes, suggesting these inhibitors 
hold potential for refining existing antitumor therapies. 
However, despite these successes, limitations in the use 
of ICIs have emerged during clinical application. These 
challenges include a low response rate in certain tumor 
types [246, 247], the occurrence of immune-related 
adverse events (irAEs) [248–250], and the development 
of resistance in some patients, leading to poor progno-
sis [251–255]. Resistance mechanisms to ICIs are com-
plex, dynamic, and interconnected, and are classified as 
either primary or acquired resistance. Understanding 
and overcoming these resistance pathways is critical for 
improving the efficacy of ICB therapy. Several studies 
have shown that compared with monotherapy, the com-
bination therapy of TIM3 or LAG3 inhibitors with PD-1 
blockade therapy can significantly enhance anti-tumor 
activity, and patients have good tolerance to the com-
bination therapy [256–260]. It is worth noting that in 
2022, the FDA approved the combination of Relatlimab, 
a monoclonal antibody targeting LAG3, with nivolumab 

Fig. 9 PTMs of LAG3: LAGs binds to LSECtin, FGL1, Galectin-3, MHC-II. LAG3 was found to have ubiquitination, phosphorylation, and glycosylation 
modification sites. However, only a few ubiquitination-related mechanisms have been studied. Currently, LUBAC is found to promote LAG3 
ubiquitination, while OTULIN inhibits LAG3 ubiquitination. LAG3 Lymphocyte-activation gene 3, LCK Lymphocyte-specific protein tyrosine kinase, 
LSECtin Liver sinusoidal endothelial cell lectin, MHC Major histocompatibility complex, LUBAC linear ubiquitin chain assembly complex, FGL1 
fibrinogen-like protein 1, OTULIN OTU deubiquitinase with linear linkage specificity
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(an anti-PD-1 inhibitor) for the treatment of metastatic 
melanoma [261]. This emphasizes the potential of combi-
nation therapies and novel immune checkpoint blockade 
in overcoming acquired drug resistance and improving 
treatment outcomes for various cancers.

Primary resistance to immunotherapy is defined as 
the lack of an objective response of the primary tumor 
to treatment, despite the absence of prior exposure to 
ICIs [262]. The primary mechanisms contributing to 
this resistance include the absence of antigens on the 
tumor surface, which prevents immune recognition, and 
defects in antigen-presenting mechanisms that impair 
the immune system’s ability to detect and respond to 
cancer cells [263]. Additional factors include poor infil-
tration of tumor-infiltrating lymphocytes (TILs) [251], a 
reduction in the number of DCs that are critical for ini-
tiating immune responses [264], and the activation of 
myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs) [265, 266], which can 
create an immunosuppressive TME. Understanding 
these mechanisms is essential for developing strategies to 
overcome primary resistance and enhance the efficacy of 
immunotherapy.

Acquired resistance refers to the phenomenon 
where tumors initially respond to ICIs but later 
achieve immune homeostasis and eventually escape 
immune surveillance during treatment [262, 267]. 

The mechanisms driving acquired resistance include 
the depletion of tumor antigens, which reduces the 
immune system’s ability to recognize and target cancer 
cells [268]. Additionally, tumors can produce immuno-
suppressive molecule, such as adenosine, which impair 
lymphocyte function and contribute to immune escape 
[269–271]. Furthermore, the upregulation of alterna-
tive immune checkpoints, such as LAG-3, TIGIT, B 
and T lymphocyte attenuator (BTLA), and TIM-3, 
can further suppress the immune response and ena-
ble tumor progression despite ongoing ICI therapy 
[271–273]. Understanding these mechanisms is cru-
cial for developing strategies to counteract acquired 
resistance and improve long-term outcomes in cancer 
immunotherapy.

Combination therapies that integrate ICBs with other 
antitumor agents hold promise for overcoming the lim-
itations of monotherapy, with the potential to enhance 
response rates, prolong the duration of response, and 
even activate antitumor immune memory. Nota-
bly, such combination strategies can reduce adverse 
effects and improve drug safety through dose adjust-
ments without compromising therapeutic efficacy. 
Common approaches include combining ICBs with 
chemotherapeutic agents [254, 274–276], anti-angio-
genic agents [277], IDO inhibitors [278, 279], molecu-
lar antibodies like Checkmate, and cell therapies [267] 
(NCT02998528, NCT03778814, NCT02742727).

Table 1 The more promising immune checkpoints

Immunization 
checkpoints

Expression position Ligands Inhibitor Number of 
clinical trials

CTLA-4 CD152 Activated T-cells, etc CD80
CD86
(B7-1 and B7-2)

Ipilimumab, Tremelimumab 695

PD-1 CD279 Activated T-cells, etc PD-L1 PD-L2 Keytruda, 3846

Nivolumab (Opdivo), Pem-
brolizumab, Cymplimab, 
Toripalimab

PD-L1 CD274
、B7H1

Tumor cells, etc PD-1 Atezolizumab (Tecentrip), 3003

Durvalumab (Imfinzi),

Avelumab (Bavencio),

PD-L2 B7DC, CD273 Dendritic cells, etc PD-1 – 261

LAG-3 CD223 Activated CD4( +) and CD8( +) T cell 
subsets, etc

MHC-II, FGL1, Galectin-3, LESCtin Relatlimab 155

TIM-3 HAVCR2 Activated T cells, B cells, etc Galectin-9, Ceacam-1, Cobolimab 106

HMGB1, PtdSer

TIGIT WUCAM T cells, NK cells, etc CD155, CD112, CD113 Tiragolumab 88

CD47 IAP Almost all normal cell surfaces SIRPα, platelet protein-1 (TSP-1), 
integrin α2β1, αvβ3

Magrolimab (fail) 95

B7H3 CD276 Immune cell surfaces such as den-
dritic cells, monocytes, B-cells, etc

– MGC-018 (Vobramitamab 
duocarmazine), DS-7300 
(Ifinatamab Deruxtecan)

97
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The advantages of targeting PTMs in combination 
with immune checkpoints
However, current clinical evidence indicates that the 
outcomes of these combination strategies often do not 
meet expectations, underscoring the need for a deeper 
understanding of ICI resistance mechanisms and the 
development of new drugs to enhance ICI efficacy. 
Increasingly, research is highlighting the pivotal role of 
PTMs in regulating immune checkpoints during tumor 
therapy. Various PTMs, including phosphorylation, gly-
cosylation, ubiquitination are closely linked to immune 
cell activation, signal regulation, immune response, and 
tumor metabolic reprogramming. These modifications 
can directly or indirectly influence the effectiveness of 
immunotherapy by modulating immune checkpoints or 
remodeling the tumor immune microenvironment. Tar-
geting PTMs, therefore, offers a promising avenue for 
improving the efficacy of ICB therapies, potentially lead-
ing to new immunotherapeutic interventions or synergis-
tic strategies that enhance clinical outcomes for cancer 
patients.

The previously described studies provide a strong basis 
for translating basic research findings into clinical tri-
als. In addition, a number of combinatorial strategies 
for cancer therapy based on the mechanisms of indi-
vidual immune checkpoint PTMs have been developed 
and evaluated in preclinical studies [13, 14, 73, 84–86, 
128, 129, 280, 281]. Continued exploration of these 
approaches holds promise for improving clinical out-
comes and advancing the field of cancer immunotherapy.

PD‑L1/PD‑1 PTM targeted strategies
The primary objective of immune checkpoint mecha-
nism research is to facilitate the translation of basic 
scientific discoveries into clinical applications. Several 
reagents targeting PD-L1/PD-1 PTMs have been inves-
tigated to reduce PD-L1 levels in tumors or to disrupt 
PD-L1 binding to PD-1. These agents include peptide 
mimics, GSK3β inhibitors, STM108, STM418, BMS1166, 
camrelizumab, mAb059c and MW11-h317Fab [13, 65, 
68, 282]. In preclinical mouse tumor models, the safety 
and efficacy of combination therapies such as curcumin 
with anti-CTLA-4 antibodies [86] have also been evalu-
ated, as curcumin promotes PD-L1 for ubiquitin degra-
dation. Additionally, research by Bai et al. demonstrated 
that USP8 interacts with PD-L1 in pancreatic cancer, 
stabilizing PD-L1 expression by inhibiting its ubiquitin-
mediated proteasomal degradation. Targeting USP8 was 
found to sensitize pancreatic tumors to PD-L1-targeted 
immunotherapy, representing a potential therapeutic 
strategy for pancreatic cancer treatment [103]. The com-
bination of the α-mannosidase inhibitor swainsonine and 
anti-PD-L1 exerts a synergistic therapeutic effect on lung 

cancer and melanoma [283]. Niclosamide can enhance 
CTL activity by disrupting PD-1 N-linked glycosyla-
tion and significantly improve the efficacy of anti-PD-1 
immunotherapy in  vivo [284]. Some studies have indi-
cated that the combined use of PKCα inhibitors and anti-
PD-L1 mAb therapy may enhance the therapeutic effect 
in breast cancer treatment. PKCα promotes PD-L1 by 
phosphorylating PD-L1 S184 and reduces PD-L1 expres-
sion by activating the ubiquitin–proteasome system for 
ubiquitination and degradation [285].

Emerging technologies like PROTAC are revolution-
izing targeted cancer therapy by leveraging the ubiqui-
tination process to induce proteasomal degradation of 
specific tumor proteins [286–288]. PROTACs typically 
consist of a ligand of the protein of interest (POI), an E3 
ubiquitin ligase ligand, and a linker, which together form 
a POI-PROTAC-E3 ternary complex that drives target 
protein degradation [289–291]. Notably, P22, a resorcinol 
diphenyl ether-based PROTAC molecule using poma-
lidomide for CRBN E3 ligase binding, degrades PD-L1 
via a lysosome-dependent pathway [292]. Additionally, 
antibody-based PROTACs (AbTACs) recruit membrane-
bound E3 ligases like RNF43 and ZNRF3 to degrade 
cell surface proteins such as PD-L1 [286, 293]. 21a is 
another PROTAC that efficiently degrades PD-L1 in a 
proteasome-dependent manner [294]. Innovations like 
lysosome-targeting chimeras (LYTACs) developed by the 
Bertozzi lab target extracellular and membrane proteins 
for lysosomal degradation, with successful application to 
PD-L1 [295]. GlueTAC, a covalent nanobody-based PRO-
TAC strategy, provides a novel approach for degrading 
PD-L1 proteins [296].

While these technologies hold significant promise, 
most PROTAC-based therapies have only been vali-
dated in cellular models, and further research is needed 
to assess their effectiveness in in vivo tumor models and 
their potential for clinical application [297].

Researchers have developed STM108, a molecule that 
targets the glycosylation of the N192 site on PD-L1, lead-
ing to its internalization and degradation. When STM108 
conjugated with MMAE, it exhibits potent antitumor 
effects and bystander effects on killing neighboring PD-
L1-negative cancer cells, with no detectable toxicity 
[298]. This suggests that targeting glycosylated PD-L1 
represents a promising immunotherapeutic strategy and 
highlights the glycosylation pathway as a potential target 
or biomarker for early diagnosis, though no clinical tri-
als have yet been conducted [255]. In addition, a tumor 
microenvironment-activated nanoassembly that PD-L1 
and CTLA-4 antagonistic aptamers are synthesized 
and co-assembly with glucose transporter 1 inhibitors 
has been demonstrated to significantly reduce PD-L1 
N-linked glycosylation. In  vivo, the nanoassembly can 
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effectively inhibit N-glycosylation-driven immunosup-
pression and promote the response to immune check-
point blockade therapy [299].

Beyond N-linked glycosylation, PD-L1 undergoes addi-
tional modifications, including serine/threonine phos-
phorylation and polyubiquitination. Horita et al. [73] also 
reported PD-L1 acetylation, tyrosine phosphorylation, 
and monoubiquitination in response to EGF stimulation. 
Palmitoylation/de-palmitoylation pathways offer another 
promising target. Advances in these researches could 
provide groundbreaking discoveries, improving immu-
notherapy outcomes and opening up new therapeutic 
opportunities.

CD47 PTM targeted strategies
The enzyme glutaminyl peptide cyclotransferase-like 
protein (QPCTL) has been identified as a regulator 
of post-translational pyroglutamate formation at the 
SIRPα binding site of CD47. Inhibiting QPCTL disrupts 
CD47 signaling, enhancing neutrophil-mediated cancer 
cell killing in vivo and offering a potential alternative to 
CD47-targeting antibodies [300]. QPCTL inhibitors, 
such as SEN177 and PQ912, are currently in clinical tri-
als for neurodegenerative diseases and have shown good 
tolerability [301].

In summary, immune checkpoint therapy has made 
significant progress in clinical application, yet drug 
resistance remains a frequent challenge. Combination 
therapies can enhance immunotherapy efficacy, particu-
larly in overcoming resistance mechanisms. Drug resist-
ance due to PTMs of immune checkpoints is common, 
but targeted intervention strategies remain limited. We 
have outlined several mechanism studies and strate-
gies targeting immune checkpoint PTMs, which have 
shown promising sensitizing effects in basic and preclini-
cal studies. Future developments in drugs and strategies 
based on PTMs of immune checkpoint will be crucial for 
advancing clinical treatment.

Conclusions
How PTMs affect the malignant process of tumors by 
regulating immune checkpoints has been a hot topic of 
research in recent years, and the available studies have 
demonstrated that PTMs of immune checkpoints play an 
important role in regulating tumor immune escape and 
affecting the efficiency of immunotherapy. Compared to 
transcriptional regulation, PTMs offer more flexible and 
dynamic control of immune checkpoint expression and 
function, with different types of PTMs synergizing or 
competing to affect immune escape mechanisms. This 
research has expanded our understanding of immune 
regulatory networks, revealed more about tumor het-
erogeneity, and introduced new strategies for targeting 

immune checkpoints in cancer therapy. However, chal-
lenges remain, particularly in determining which PTMs 
are critical for immune checkpoint function in clinic, 
especially in patients with immune therapy resistance, 
and suitable for drug development. While phosphoryla-
tion-related research is relatively advanced, techniques 
for studying other modifications, like glycosylation and 
palmitoylation, are still limited, requiring the develop-
ment of new tools. Moreover, the transient nature of 
some PTMs, influenced by environmental factors, under-
scores the importance of accurately preserving clinical 
samples to reflect the in  vivo modification state. Future 
research should aim to bridge the gap between basic 
PTM studies and clinical applications, focusing on multi-
omics approaches to provide a comprehensive under-
standing of PTM roles in immune checkpoints. This 
could offer new insights for optimizing immunotherapy 
and overcoming tumor resistance mechanisms.
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PVR  Poliovirus receptor
RCC   Renal cell carcinoma
SW  Swainsonine
TAMs  Tumor-associated macrophages
TGN  Trans-Golgi network
TILs  Tumor-infiltrating lymphocytes
TKIs  Tyrosine kinase inhibitors
TM  Tunicamycin
TME  Tumor microenvironment
TNBC  Triple-negative breast cancer
TSP-1  Thrombospondin-1
UCHs  Ubiquitin Carboxyl-Terminal Hydrolases
UPR  Unfolded protein response
USPs  Ubiquitin-specific peptidases
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